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ABSTRACT Jo 26 s 1

The Green's function technique is utilized in the determination of
the field distribution of an infinitely long current carrying conductor
of arbitrary but constant cross section above a superconducting ground
plane of finite thickness. It is assumed that the superconductor can be
described by the phenomenological London equations. The integral expres-
sions that are obtained are solved analyticelly for a few specisl cases
of interest. It is shown that under certain conditions, which are often
encountered in a physical system, s modified image method can be utilized
in order to calculate the field distribution to within 2 percent of the
computer solution Pott 2 ThoR
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Due to the rapid advance of technology in the area of superconduc-
tive devices for computer applications, a great deal of interest has been
expressed in developing high speed switching components.(l) It has been
shown thset a device whose basic structure is that of a thin superconduct-
ing film above a superconducting ground plane exhibits the desired switch~
ing speed characteristics.(z’B) The basis of any electromagnetic analysis

of this type has been the assumption that the return current in the ground

plane is localized under the current carrying film effectively forming a
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strip transmission line whose characteristics are then calculated.(4’5)
The previous assumption (henceforth called the Strip Line assumption) is
made for geometries in which the film width is much larger than the
spacing between the film and ground plsane.

However, it is often necessary to determine the field distribution
>for geometries whose parameters do not fit the requirement needed for
the Strip Line assumption. In this paper, the Green's function teéhnique
is used in deriving a general expression for the field of a conductor,
which 1s carrylng current above & superconducting ground plane. The Strip
Line assumption is verified and s few cases of particular interest are
examined. A modified image technique is developed that is useful for
determining the field of the current carrying conductor 1f certain geo-
metrical conditions, which are often encountered in practice, are satis-
fied.

Characterization of the Superconducting Ground Plane
It will be assumed that the properties of the ground plane can be

described by the London equations

E = po(8)2 S (1)
H = -()"2 vx3 (2)

H. (The

where f 1s the reciprocal London penetration depth and B = Ho

rationalized mks system of units is used throughout this paper.) It can

be shown from Eqs. (1) and (2) that in the coulomb gauge under static

conditions
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and
ved = pef : (4)
The following statements will be considered to be valid in the
following analysis (Fig. 1):
(1) ¥ in the ground plane has only one component (in the z-direction)
(2) T 1in the ground plane is bounded in space (this will be jJustified
later) ‘
It will be assumed that the current density in S' 1is known. In the
London gauge
K= - 5% (5)
and
v2h = %R (6)
A straightforward argument can be used to prove that i is uniquely
determined for a given total ground plane current.
Statement of Problem
Consider the situation in which a current carrying source of arbi-
trary cross section is placed above a superconducting ground plane
(Fig. 1). A fraction ¢ = Il/IO of the current is returned throﬁgh the
ground plane and (1 - &) of the current is returned through the wire above
the conductor. It is assumed that there is no geometric variation in the
z~direction so that J/dz of the field quantities are zero.
The source current density 3S(x',y'), which has only a z-component
ean be separated into a symmetric and antisymmetric part (with respect

to ¥') called 33 and 3&, respectively.

ES(X',Y') =j>s(x':y') +33(X’:‘y') (73-)
Fo(xt,y") = Tglx',y') - Tglx',-y") (7b)



Where

43;(::'”') & =1, (8)

The Green's function diagram, which corresponds to Fig. 1, is shown
in Fig. 2. Due to the separation defined by Eqs. (7a) and (7b) symmetric
and antisymetric pairs of delta function sources are used to generste
the Green's function of the system. For simpliclity consider the case for
¢ =1 first. Since free space can be described by the equation

| V2K = -p 3 (9)
the solutions to Egs. (5) and (9) in the regions shown in Fig. 2 are as
follows: (A, (F/F') and A,.(F/?') ere the symmetric and antisymmetric

(Green's) vector potentials, respectively).

Region 1,2:
00
A, (F/2) Cia(k)cos ky
8 1,2 1s
2 e\ ekX gx (10a)
e
Aza(r/?’)l’z o C1g(k)sin ky
Region 3:
00
A, (T/F)4 cos ky Cog (k) Cag (k)
8 = ® kX 4 kx| ax
A (FfF )z o sin ky Cog () Cag (k)
(10b)
Region 4:
o
A _(r/r") cos ky C 55 C 5
4] / 4 - 4s e B2+k2 x + Ss " Bz+k2 x dk
Ayg(r/r'), sin ky C4q Csg,

(10c)



Region 5:

o0
A _(r/r'") C.. cos ky
pA 5 6
5 = 5 kX ax (10a)
A, (r/rt)g o Cqq 5in ky

KX vas rejected for x > x', and the solution e~kx

The solutlon e
wag rejected for x < ~-d, since 1t is assumed that the current density
in the ground plane is bounded (in the x,y plane) and that the Green's
vector potential is zero at x,y =w. This 1s reasonable since the
ground plane in any physical situation is not infinitely wide but can
indeed be very wide 1in comparison to the source conductor dimension and
x'. A similer statement can be mesde regarding boundedness in the
z-direction. Therefore, the boundedne;s statement given in the last
section is justified due to the above physical argument.

In order to evaluate the C's, it is necessary to realize that the
x=-component of B 1is continuous at x = x', 0, -4, while the y-component

of B is continuous at x = 0, -d and is discontinuous at x = x'. The

five equations describing the continuity of field are simply algebraic in

form and will not be explicitly shown here. The discontinuity of Hy at
X = x' 18 not quite so obvious and will be derived here. At x = x'
Hy(region 1,2) - Hy(region 3) = u,[8(y - y') * 8(y + y')] (11)

The signs on the right refer to the symmetric and antisymmetric cases,

respectively. &(y # y') is the Dirac delta function. Eq. (11) becomes

r e
j [C (k) - Cp(k)Ike kX' + Cs(k)ke'm)i }dk
0 sin ky

= uold(y - y'") £ 8(y +y")] (12)
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Using the Fourier integrasl theorem yields

et , 210 cos ky'
[0y (k) - Cpk)Je™™*" + e (k)" = =2 (13)
sin ky'
Simultaneous solution of Eq. (13) and the five continuity equations

yields the values for the C's. If S is defined as cos ky' 1in the

symmetric case and sin ky' in the antisymmetric case and

- otNBPkZa > (13a)

S
then
' -k
Cl=§ —2 ek(x -d) [(5 ) (Y+&++T_a_) + (6_‘_)(7‘_@_- Y+a,+§|
2, '
Co = %HE K- (@ ) (@) vy - 1)1
L ey &(131))
3 " kn °
Cy =1 EEEE ek(x"d)or,_\g_r
S
-s 8u 1
Cg = 7? —;9 ekx (a, - k) y
where

A = +2ek(2x'-d) Eu)(agz - <r_>(a_)2]

Once the Green's potentials have been found, it is a simple matter

to express the vector potential for the configuration shown in Fig. 1



(remembering that the case for & = 1 is under consideration):

Regions I, II, IV, V, VI:

A,(x,y) = ff [JS(X',y')AZS T/E) + Ja(x’y‘)Aza('i"/F’):,dx‘ ay'

1
—_— S'
2 (14)

(% S' refers to an integration over the source area defined by y' 2> 0)
where the primed integration is over the source cross section. Azs(?/?')
and Aza(?/?') are the sppropriate vector potentisls for the region under
consideration.

Region III:

A (x,y) = A/ES(X',Y‘)AZS(?E')l + Ja(X',y')Aza(?/?')l]dX' ay’
1

+f fETB(X',y')AZS(i"/"r")s + Ja(X',y‘)Aza(?’/i")gdr dy' (15)
82

where Sl is the portion of the source region in which

x < x'
(16a)
y'20
and Sz is that portion in which
x> x'
(16b)
y'20

In the above equations, ¥' and T are the source and field points,
respectively.

It can now be shown that the total current in the ground plane 1is
-Iy. From Egs. (5) and (14) it is seen that the current in the ground

plane is



I=- % // /f[Js(x'y‘)Azs(?/?’)gd.x‘ dy' dax dy (17)
2

where the unprimed coordinstes refer to a point in the ground plane. (It
can be shown by direct integration that the antisymmetric current density
does not contribute to the net ground plsne current.) Integrating over y

first yields

0 00

2 A[3241c2
I=- E_ 2n G(k)Js(x'y')[%4s N B+kT x
)
-d 0
1
5 S

S5s

N
+C. eVPT+k de.x' dy' dx (18)

Integrating over k and x, respectively, yields

I=-2 ‘/<;/ﬂ Jg(x'y')ax" ay' = -Iy (19)

which completes the proof.
Partial Current Return in the Ground Plane (0 < & < 1)
This case can be treated as the superposition of two situations. In
the first situation, all the source current Iy 1is returned through the
ground plane. In the second situation there is no source conductor, and

the return wire carries current (I; - Iy), which is returned through the

ground plane.

Using this superposition the Green's vector potential can be found

directly by considering the case for ¢ = 1.
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Define constants D(k) that are related to C(k) by the relations
Dg(k) = -(1 - £)C4(k)/2 (20a)
(and replace x' in the C (k) expressions by x")
D,(k) =0 (20b)

Thus, the Green's potentials are:

Region 1:
Az(?/F')l = AZ(?/?')llg 1 + u/ﬁ D, (k)cos ky e KX gk (21a)
= O
Region 2:
Az(?/?‘)z = Az(?/?‘)llg 1 + L//W cos ky[%z(k)e'kx-+D5(k)ekx dk
= 0
(21v)
Region 3:
A, (FfR')z = Az(r/r')3( + f cos J:{yE)z(k)e"kx+D3(k)ekx dk
=1 0
(21e)
Region 4:

Az(?/?')ﬁ‘\z(?/?)":‘é“ ' / cos ky ﬁ4(k)e’\132+k2x+ D (k) e~ VB HE? {)dx
0

(214)

Region 5:

/100
5' + Dg(k)eos ky ekX gk (21e)
le=1 o
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For many cases of practical interest, the return wire is far from

the ground plane and the source conductor. It can be verified that

8(k)

lim D, (k) = -C(0)(1 - &) n=2,...,86 (22a)
TS 5(0) ’

Therefore,
lim Az(?/?')nlo<§<l = AZ(?/?')!§=1 n=2,...,86 (22
X 0 -

The net current in the ground plane can be found in a manner identical

to Eqs. (17) to (19) and can be shown to be -I This means that although

1
the ground plane only returns & fraction of the source current, the vector
potential is identical to the case for & =1 1if the return wire is far
from the source and the ground plane. If one remembers the superposition
that is the basis of Egs. (21(a-e)), it is apparent that if the ground
plane carries a current 'Il’ -Io of the current follows the distribution
given by Eq. (17), whiie (Ig - I;) is uniformly distributed over the entire
ground plane cross section. The current density of the uniform distribu-
tion is infinitely small so that it does not contribute to the vector po-
tential, however, its integral over the cross section of the ground plane
is still (IO - Il). It should also be noted that Eq. (22a) is valid only
if IO is finite. A geometry that violates this restriction will be
examined below.

The above discussion is not as remote as it may seem. Consider a
ground plane of finite width Wé. Assume that the source conductor has
dimensiOns small compared to Wg and is close to the ground plane sur-

face. Also assume that the return wire is far from the source conductor

and ground plane. However, stipulate that the perpendicular distance from
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the return wire to the ground plane is also much less than Wg. For this
case, Eq. (22b) is satisfied in the neighborhood of the source conductor.
For certain geometries (discussed later) the fields in the neighborhood
of the source are very large in comparison to the fields elsewhere so that
Eq. (22b) can be used to advantage in calculating the inductance of the
structure.

The Green's vector potential is now completely specified for arbi-
trary ¢ so that it is now appropriate to examine a few source conductor
geometries of general interest (it will be assumed that the return wire
is essentially at infinity for the remsinder of the paper).

Special Cases of Interest
Case 1: |
js(x',y’) = Jp8(x" - a)

This source distribution violates the requirement that I, be finite
s0 that Eq. (22b) cannot be applied here. Although the fields from this
distribution can be more easily obtained by a one-dimensional analysis,
they can also be obtained from the above equations to demonstrate the
validity of the analysis. Using Eq. (14) with Egs. (21(a-e)) for the
Green's vector potential and performing the curl operation yield the
following relationships

x>a Hy = Jp(1 - £)/2 (238)

O<x<aHy=-JL(l+g)/2 (23b)

'

Jr(1+ e L )
-4 < x<O0Hy= Lt+t) {[(1 e) - (L+¢)cosh Bd—lsinh BxX - cosh Bx}

2 (L+¢)sinh pd |
(23c)

x < -d Hy = -J,(1 - &)/2 (23d)
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_ Case 2:

Jp8(x' - a) |y'| <W

Ig(x',y') = (24)

0 ly'| >W
The current per unit thickness in the ground plane, which is contained

in a width 21, is

1 [ W oo
2 , /
Jy(x) = - E— / f f f Ji8(x" - a)cos ky EJ‘LS(k)e p2+kZ x
° Ja Jo o 0 '

,,/ 2.2
+ Cgg(k)e~ VBT X] dx' dy' dk dy (25)
Integration with respect to x', y', and y, respectively, yields
s

o0
2 Cholk,x" =2) ,/ 3.3
Jz(")='§p—/ Iy | o'V RTHkT X
(o]
0

cos ky'

Ce (k,x' = a) m . .
Ssg'\? -A/B%+k4x | sin ki sin kW
+ cos ky' © k k dk (26)

Introducing the change of variables k' =k d yields for the case

W >> B'l,a
[+
1
-4pW1T. [ p(a+x)  -p(a+x) sin EL gin k' ¥
Iy (x) = d:rrLe +d+e-d zd wddk' (27)
e B - e B kl E k! a

The current density is given by

sz(X)
d(zal
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so that for 1 < W

Bld+x) _ o-B(d+x)
I (x) = ’BJL{% e+:d - :-Bé - J (28)
1> W
(29)
I x) =0

which verifies the Strip Line assumption discussed in the introduction.
Modified Image Technique

There is a large class of problems that can be solved without resort-
ing to manipulations such as were shown in cése 1 and 2 by using a modified
image technique that will now be discussed. For simplicity, consider the
Green's vector potential that is generated by a single delta function source
of unit strength inside the source conductor at x' = a. There will be no
loss in generality by tsking y' = O.

If @&, (see Fig. 1) is much larger than B'; then a/p~l >> 1, since
a 1s the x-coordinate of an arbitrary delta function source 1nside the
source conductor. If a/B‘l >> 1 the Green's current density in the

ground plane is (Egs. (5) and (14))%

EY oka/d g (30)

cosh [(g + l) Bd] o
cos
sinh Bd Ué:

which reduces to

cosh(-JE + l)Bd
a d

- 1
LEE) ~ - %3

(31)
a® +y ‘

s B —=im Ba

*
A factor of 1/2 must be introduced into equation (14), since here a

single delta function source is being considered (rather than a symmetrical

pair).
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The factor —a/n(a2 +»y2) is the current per unit width at the x =0
surface of the ground plane which is found by replacing the ground plane
by the image of the delte function source. Since Eq. (31) is valid for
every delta function source that makes up the source conductor the follow-
ing general rule can be established. Given a source conductor of arbitrary
cross section with the specification that dl >> B'l the current density
in the ground plane can be found by first finding the current per unit

width at x = O by using the method of images and then multiplying
J,(x = 0) by B cosh [(.E + 1) ;3%) /sinh Bd.

Equation (31) reduces to the perfect conductivity limit (=1 - 0) as

can be seen by considering the following:

a

lim - = pePX - (32a)
B—;oo X a + y
It is interesting to note that
oo Xx =0
lim peP* = (32Db)
B0 0 x<O0
and
0
lim BePX ax = 1 (32¢)
B0 U-d
Thus, for x <0
1im peP* = 8(x) (33)
B0
and
J(F/E") = -%-z—é——z 8(x) (34)
a® +y

which is the correct result if the ground plane is g perfect conductor.
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It is now instructive to examine the numerical solution to the Green's
current density in the ground plane for the case of a unit delta function
source at x' =a and y' = 0. The dimensionless expression for the

current density (from Egs. (5) and (14)) is

(o0}

X+ 1)A/(Ba)2+x2

J,(x,y)a? = - dk LB-%E cos(%i’- k) Ale(d )
0
(X 242

+ Age (d+l) (Ba) e (35a)
where
Ay . ‘

e'(a/d)k[k + Af(Bd)2 + kz]
t‘\z e/\/(Bd)2+k2&[+ , /(Bd)z +k2]2 ) e_l\/(Bd)2+k2\%_ (Bd)2+k2]2
' (35b)

Although the left side of Eq. (35a) does not appear to be dimension-
less, it should be remembered that a unit strength source is under con-
sideration. Equation (35) was solved by a modified Simpson's rule using
an IBM 7090 computer. It was found that the integrand converged rapidly
to zero so that infinity could be replaced by a finite number N (the
highest N that was used was 81). The results are given in Figs. 3 to 6.
Tt should be noted by comparing Eq. (31) with Figs. 3 and 5 that the modi-
fied image technique developed in this paper is valid to within 2 percent;
The numerical results for the Green's current density can be used to evalu-

ate the current density in the ground plane for an arbitrary source
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conductor by using approximation techniques for cases in which the modified

image technique is not valid.

The author is grateful to Mrs. P. Yohner and Mr. W. Vieth for pro;
gramming. and carrying out the numerical calculations. The author also
wishes to thank Mr. R. Jirberg for his critical review of the manuscript.
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Flg. 1. - Current carrying coaductor above superconducting
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Fig. 2. - Green's function diagram.
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